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FINAL REPORT 

NASA Grant No. NsC-326-63 

During t h e  grant  period w e  have inves t iga ted  a number of problems 

associated with t h e  use of space-time coordinates i n  physical  theory.  

of the  r e s u l t s  of t h i s  inves t iga t ion  are contained i n  t h e  p rep r in t  and re- 

p r i n t  at t h e  end of t h i s  repor t .  

of coordinate conditions i n  general  r e l a t i v i t y .  

Conditions and Canonical Formalisms i n  Gravi ta t ional  Theory" reviews t h e  

var ious types of conditions t h a t  have been proposed and shows i n  what sense 

they  are related t o  each o ther ,  It a l s o  discusses  t h e  construct ion of a 

Hamiltonian formalism when coordinate conditions are employed and demonstrates 

the  equivalence of var ious methods employed i n  these  construct ions.  

paper "Maximal Covariance Conditions and Kretchmann s Rela t iv i ty  Group" we  

examined t h e  question of what cons t i tu tes  a maximal set of coordinate con- 

d i t i o n s  using t h e  gauge group of electrodynamics a5 a model. 

question bears d i r e c t l y  on t h e  Kretchmann d e f i n i t i o n  of the  r e l a t i v i t y  group 

of a theory.  

genera l ,  t o  a t r iv ia l  group, 

November 1964) w a s  concerned with the  problem of making space-time measurements 

and i n  p a r t i c u l a r  with the problem of constructing a model clock within t h e  

framework of a space-time theory. 

of such a clock is  independent of t h e  coordinate system employed i n  i t s  con- 

s t ruc t ion .  We a l s o  showed t h a t  the usual assumption t h a t  a model clock reads 

proper time i s ,  i n  genera l ,  unwarranted since t h e  behavior of such a clock 

depends on how it i s  constructed.  

Pa r t  

We have given spec ia l  a t t e n t i o n  t o  t h e  use 

The paper "Coordinate 

I n  t h e  

The m a x i m a l  

W e  were able t.n nhnv that the Kretchmnnn deiinit icr? I e ~ d s ,  is 

"Twins , Clocks and Geometry" ( r e p r i n t s  submitted 

O u r  main conclusion was tha t  t h e  construct ion 
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Unfortunately, a number of results having t o  do with t h e  p r inc ip l e  of 

general  covariance have not as ye t  been m i t t e n .  While the paper "Twins, 

Clocks and Geometry" a l ludes  t o  some of these results, t h e  r igorous die- 

cussion is  only now being completed. 

d i s t i n c t i o n  between t h e  absolute  and t h e  dynamical elements of a theory.  

The main idea  involved is  t h e  

I I n  spec ia l  r e l a t i v i t y ,  f o r  example, t h e  metric i s  an absolute  objec t  while 

i n  general  r e l a t i v i t y  it is a dynamical object.  

t o  def ine  two d i f f e r e n t  groups of a physical theory,  the  covariance group and 

We have used t h i s  d i s t i n c t i o n  

t h e  symmetry group. 

a so lu t ion  of a set of equations onto another so lu t ion .  

The former group is  the  group of transformations t h a t  map 

The symmetry group, 

on t h e  o ther  hand, i s  t h e  subgroup of the covariance group t h a t  leaves 

h v a r i a n t  t h e  absolute  objec ts  of the theory. 

absolute  ob jec t s  then t h e  two groups a r e  i den t i ca l .  

O f  course,  i f  the re  are no 

Using t h i s  d e f i n i t i o n  

we can show t h a t  the symmetry group of general r e l a t i v i t y  is j u s t  t h e  

Poincare group, regard less  of whether the covariance group i s  the group of 

a l l  cccrdinate  mappings o r  j u s t  t h e  Poincare group. We have also extended 

these  ideas  t o  the  problem of defining in t e rna l  symmetries of a theory. 
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Maximal Covariance Conditions and Kretechmen's Rela t iv i ty  Group*+ 

James L. Anderson 
Department of Physics 

Stevens I n s t i t u t e  of Technology 
Hoboken, New Jersey 

ABSTRACT 

The general problem of how large a se t  of covariance conditions one can 

impose on a theory with a covariance group i s  discussed. 

conditions one makes the na tura l  requirement t h a t  such conditions m u s t  be 

s a t i s f i a b l e  by a t  least one member of every equivalence class of physically 

d i s t i n c t  so$utions. Even so we have shown i n  the cases of  electrodynamics 

In Imposing such 

and r e l a t ive ly  theory tha t  one can impoae a number of conditione su f f i c i en t  

t o  reduce the  covariance group down to  t h e  ident i ty ,  

conclude t h a t  the Kretschman def in i t ion  of the  Relat ivi ty  group of a theory 

is not a useful def in i t ion  since it always lea& t o  the  Rela t iv i ty  group 

As a consequence we 

being t h e  ident i ty  group. 

* Dedicated t o  Professor Vaclav Hlavaty on h i s  seventieth birthday 

+ This research has been supported i n  part  by NASA Grant No, NsG 326-63. 
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I, INTRODUCTION 

Whenever a system of  physical  laws admits a covariance group it l e  

possible  t o  eeparate  t h e  dynamically possible  t r a j e c t o r i e s  i n t o  equivalence 

c lasses ,  two t r a j e c t o r i e s  belonging t o  t h e  same equivalence c l a s s  i f  it is 

poasible t o  transform one i n t o  another by an element of t he  group, 

t h e  p o s s i b i l i t y  of such a separat ion is j u s t  what we mean when we  sby t h a t  

a system of lawe admits a covariance group. When we come t o  i n t e r p r e t  

such a system of laws and the  dynamically poss ib le  t r a j e c t o r i e s  admitted 

by them it is c l e a r  t h a t  a l l  of t he  t r a j ec to r i e8 ,be long lng  t o  a p a r t i c u l a r  

equivalence c l a s s  must be considered as descr ibing t h e  same physical  state 

of t h e  system. 

incomplete s ince  they by themselves do not  allow a d i s t i n c t i o n  t o  be made 

between t h e  various elements of  an equivalence c l a s s ,  

I n  f a c t ,  

Otherwise the  dynamical laws must be considered as being 

As a consequence of  the  exis tence of a covariance group, some p a r t  of  

the  co l l ec t ion  of configuration var iables  used t o  descr ibe t h e  t r a j e c t o r i e s  

of t h e  system i n  question is superfluous as f a r  as t he  charac te r iza t ion  of  

physical ly  d i s t i n c t  states of the  system is  concerned. 

therefore  i n  such cases of  imposing addi t iona l  non-covariant r e s t r i c t i o n s  on 

t h e  configurat ion var iables .  

be satisfied only by a subset of elements i n  each equivalence c l a s s ,  

can, for ins tance ,  e l iminate  t h e  t r a n s l a t i o n a l  covariance associated with an 

Nobody system by tak ing  t h e  center  of mass o f  t h e  system t o  be a t  t h e  o r i g i n  

of  coordinates.  Another familiar example i s  t h e  Lorentz gauge condi t ion one 

The p o s s i b i l i t y  exists 

These r e s t r i c t i o n s ,  being non-covariant , w i l l  

One 
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sometimes employs i n  electrodynamics. 

such conditions a s  covariance conditions.  

I n  what follows we s h a l l  r e f e r  t o  

The need t o  impose covariance condition8 a r i s e s  most s t rongly  i n  

cases  where t h e  covariance group i a  a gauge group, i.e.,  a group whoee 

various elements a r e  spec i f ied  by one o r  more space-time functions,  as i s  

t h e  case f o r  t h e  gauge group of electrodynamics and t h e  group of a r b i t r a r y  

coordinate transfoxmations of space-time theories .  

ins tances  one cannot solve the  dynamical equations of motion i n  such cases 

Except i n  spec ia l  

unless  one br ings i n  covariance conditions. They a r e  also needed i f  one 
(1) 

wishes t o  construct  an unambiguous Hamiltonian f o r  such a theory.  

I n  imposing covariance conditions the  question a r i s e s  a s  t o  how f a r  one 

can go, i .e.,  what are the m a x i m a l  number of conditions one can impose on 

a theory. 

From t h e  p r a c t i c a l  point of view it is des i rab le  t o  know t h e  answer t o  t h i s  

question s ince  it will t e l l  3s what prt of t h e  co l l ec t ion  of configurat ion 

var iab les  corresponds t o  physical ly  observable aspects  of t h e  system and 

consequently how much information i s  needed i n  order t o  spec i fy  a state 

of t h e  system. Furthermore t h e  imposition of covariance condi t ions may lead 

d i r e c t l y  t o  t h e  elimination of non-physical degrees of freedom of t h e  system 

and hence s implify the  problem of solving t h e  equations of motion of the  

system. 

It i s  t o  t h i s  question that we address ourselves i n  t h i s  paper. 

O f  course one would want t o  e f f ec t  as grea t  an el iminat ion as possible.  

-2- 



The question of how many covariance conditions can be imposed on 

a given theory was ac tua l ly  f i r s t  raised by Kretschmann(2) s h o r t l y  after 

t h e  advent of  t h e  General Theory of Rela t iv i ty .  

t he  p r inc ip l e  of  general  covariance on the grounds t h a t  any theory could 

be made t o  conform t o  it by the  device of introducing add i t iona l  degrees 

Kretschmann c r i t i c i z e d  
I 

i 
I 
I of freedom i n t o  t h e  theory. As an a l t e r n a t i v e  he attempted t o  def ine  

I 

I 
what he ca l l ed  t h e  Re la t iv i ty  group of the  theory.  ID order  t o  determine 

t h i s  group one imposes the  maximal number of  covariance conditions on t h e  

configurat ion var iab les  of the theory,  maximal i n  the  sense t h a t  any addi t iona l  

conditions would eliminate one o r  more equivalence c l a s ses  by being unsa t i s -  

fiable by anymember of  these  c lasses .  The Re la t iv i ty  group of  t he  theory is 

then t h e  covariance group o f t h e  o r i g i n a l  dynamical laws plus  t h e  supplementary 

conditions.  O f  course, i f  it i s  always possible t o  e l iminate  t h e  covariance 

group e n t i r e l y  by the  Judicious choice of covariance condi t ions,  Kretschmann's 

d e f i n i t i o n  would not be too meaningful. 

I n  t h i s  paper w e  sha l l  discuss  those aspects  of the problem of  t h e  i m -  

pos i t ion  of covariance conditions t h a t  bear on t h e  points  raised above. Unfor- 

t una te ly  one cannot a r r ive  t o  any generai conciuaions since t'ne situation varies 

from group t o  group and from theory t o  theory. I n  s p e c i f i c  cases we sh'all 

see  t h a t  it i s  always possible  t o  reduce t h e  covariance group down t o  a t  most 

a f i n i t e  parameter L i e  group. I n  these  cases such a reduction i s  s u f f i c i e n t  

t o  allow m e  t o  construct  Dirac brackets  for t he  theory. Any f u r t h e r  reduction 

w i l l  i n  general  depend upon t h e  group i n  question and the  configurat ion var iab les  

ava i l ab le  f o r  the  reduction. However, i n  important cases of t h e  gauge group 
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l and the  full coordinate group we w i l l  see t ha t  it i s  poss ib le  t o  r e s t r i c t  

t h e  covariance group down t o  the i d e n t i t y  element even though t h e  theory 

possesses weak, proper conservation laws and consequently, by Noether's 

theorems, a symmetry group. For these  theor ies  Kretschmann's R e l a t i v i t y  

group would be empty and hence we conclude t h a t  t h i s  Re la t iv i ty  group is 

not a use fu l  concept i n  analyzing dynamical laws. 

11. GENERAL REQUIREMENTS ON COVARIANCE CONDITIONS 

I n  order t h a t  a given covariance condition be compatible with a given 

set of dynamical laws it i s  necessary that  it can be s a t i s f i e d  by a t  least  

one member o f  every equivalence c l a s s  of possible t r a j e c t o r i e s .  If t h i s  

were not t h e  case i t s  imposition would eliminate one o r  more equivalence 

c lasses  and hence change t h e  physical content of  t h e  o r i g i n a l  equations of  

motion. 

ments one can m a k e  on poss ib le  covariance conditions. 

number of addi t iona l  requirements one might wish t o  impose from t h e  stand- 

point o f  convenience. 

Aside from t h i s  requirement there  are no o ther  hard and fast require- 

However, there are a 

Since one of the  reasons one imposes covariance conditions i n  t h e  first 

place is  t o  enable one t o  construct a canonical formalism f romthe  corresponding 

Lagrangian formalism one would w a n t  t o  require t ha t  these  conditions can be 

expressed i n  terms of  t h e  canonical variables o f  t h e  theory. 

t h i s  requirement then we can no longer use t h e  Lorentz condition of electrody- 

namics o r  t h e  corresponding de Donder conditions of general r e l a t i v i t y .  The 

Lorentz condition involves the  time der iva t ive  of the  s c a l a r  p o t e n t i a l  while 

I f  w e  accept 
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I 
I 

the  de Donder conditions involve the time der iva t ives  of the  G ~ , ,  components 

of t h e  metric tensor ,  ne i ther  of which can be expressed i n  terms of canonical 

var iables ,  One would a l so  l i k e  t o  require  t h a t ,  once s a t i s f i e d ,  n covariance 

condition w i l l  remain s a t i s f i e d  throuahout t h e  temporal evolution of t h e  

system. We make t h i s  requirement i n  order t h a t  t he  condition can be employed 

t o  el iminate  non-physical degrees of freedom. 

There i s  an addi t ional  requirement one might wish t o  m&e, namely t h a t  

of l oca l i t y .  We impose t h i s  condition i n  keeping with the  l o c a l  na ture  of 

most dynamical laws. Suppose t h a t  we have ca r r i ed  out  a s e r i e s  of l o c a l  

measurements on a system described by a se t  of equations with aecdvariance 

group. I n  order  t o  check t h e  v a l i d i t y  of these  equations one would impose 

covariance conditions i n  su f f i c i en t  number t o  lead t o  a determination of t h e  

configuration variables s u f f i c i e n t  t o  carry out t h i s  check. 

conditions were non-local a knowledge of the r e s u l t s  of  t he  l o c a l  measure- 

However, if t h e  

ments would i n  general be in su f f i c i en t  for  t h i s  purpose. 

111. GAUGE INVARIANCE 

Before w e  t r y  t o  a r r ive  a t  any general conclusions it w i l l  be he lp fu l  

t o  examine i n  some de ta i l  one r e l a t i v e l y  simple group, namely t h e  gauge group 

of electrodynamics, 

fea tures  of t he  more complicated groups t h a t  arise i n  physics. 

In  s p i t e  of i t s  s implici ty  t h i s  group contains  many 

It is wel l  known t h a t  t he  Klein-Gordon equation f o r  a complex f i e l d  J, 

i n  t h e  absence of electromagnetic fields admits the  group of gauge transformations 

of t h e  f i rs t  kind 

- 5- 



where a is an a r b i t r a r y  constant. The existence o f  t h i s  group l eads  t o  t h e  

cont inui ty  equation f o r  p a r t i c l e  number or  charge. 

t he  value o f  a by requi r ing  t h a t  

Nevertheless one can f i x  

a t  t h e  o r i g i n  of  t h e  coordinate system. 

our fundamental requirement on such conditions, Even when J, happens t o  be 

zero a t  t h e  o r ig in  t h e  condition is obviously s a t i s f i a b l e  even though a is  

not determined. 

w e  no longer have t h e  freedom of performing fhrther gauge transformations of 

t h e  type,  (') 

following t h e  procedure of Kretschmann it would be the t r i v i a l  group cons i s t ing  

of t h e  i d e n t i t y  transformation. 

f o r  t h e  theory  i n  s p i t e  of  the imposition of condition, 

This covariance condition satisfies 

However, once we impose t h e  condition (2) on t h e  theory  

If w e  were t o  define a Re la t iv i ty  group f o r  such a theory 

Nevertheless one s t i l l  has a conservation l a w  
(2) 

One can extend t h e  gauge transformations of t h e  first kind t o  those of 

t h e  second kind by allowing a t o  become an a r b i t r a r y  space-time function. I n  

order t o  do so it i s  necessary t o  replace ordinary de r iva t ives  of t h e  J, f i e l d  

by "covariant" de r iva t ives  defined by ( 3 )  

J I ; ,  - - +,ll + i A p J I  ( 3 )  

where A is  t h e  a f f i n i t y .  By requi r ing  t h a t  J, transform l i k e  e under an 

extended cauge transformation one is l ed  t o  t h e  transformation l a w  f o r  A 

namely 

Ir ;P 

v '  
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h e  analogue of the  Riemann tensor  f o r  thisconnection is defined i n  terms of 

the  commutator of t w o  covarinnt der ivat ives  

l and is given by 
I 

A t  t h i s  point  one could t & e  P = 0 as a possible  set of equations 
P V  

governing t h e  A,,* 

of the o r i g i n a l  f i e l d  free Dirac equation. 

necessary and s u f f i c i e n t  condition ( i n  a simply connected domain) t h a t  A,, 

is the &adient of a sca l a r .  

would produce an A' = 0. an4 .hence reduce .the covarlant der iva t ive  t o  au 

ordinary de r iva t ive ,  

group of t h e  Dirac equation plus  equation ( 5 )  is  t h e  group of gauge t ranafor-  

Doing so would obtviously not a l t e r  t he  physicalcontent  

The vanishing of FPu is t h e  

lak ing  a t o  be the  negative of t h i s  s c a l a r  

IJ 

However, when the A is  not so reduced t h e  covariance 
P 

matin?rs nf the second kind*  

The example discussed here is of course j u s t  a s implif ied version of what 

one does i n  Spec ia l  Re la t iv i ty  when one enlarges t h e  covariance group t o  include 

a r b i t r a r y  coordinate transformatiom by bringing i n  e x p l i c i t l y  the  metric tensor  

gPve 

Riemann-Christoffel t ensor  R 

The physical  content of the  theory i s  unal tered i f  one requires  t h a t  the  
P 

= 0. By making such an extension of the  
V P  [J 
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covariance group it would seem a t  first s ight  t h a t  t h e  s p e c i a l  pos i t ion  

of the inhomogeneous Lorentz group i s  l o s t  j u s t  89 the s p e c i a l  s ign i f icance  

of t h e  gauge transformations of  t h e  first kind i e  l o s t  i n  our  example 

above, 

of the Re la t iv i ty  group. 

Re la t iv i ty  group is not  the group of gauge transformations of the  first kind 

It was f o r  Jus t  t h i s  reason that Kretschmann introduced the  notion 
c 

A t  l e a s t  i n  the case of  t he  gauge group the 

88 one might expect. ( 4 )  

If one does not, require  t h a t  F = 0 bu t  rather tha t  it satisfy t h e  usua l  
IJV 

Maxwell equations in \the presence of charge it i s  necessary t o  impose gauge 

conditions on the  A A 

number of  d i f f e r e n t  cgn$itions have been used f o r  t h i s  purpose. 

common of these is the Lorentz condition 

i n  order  t h a t  one be able t o  so lve  these equations. P 
Among the most 

We have already pointed out  t h a t  t he  Lorentz condition is  not  useful i n  a 

canonical formalism, containing as it does Ao , 

defec ts ,  Any 

so lu t ion  of D'Alembert's e q u a t i o n 0  a = 0 can be used t o  generate d gauge 

transformation t h a t  is  a covariance transformation of Eq. (7).  One could 

of course work with the Lorentz condition as it stands as one does, f o r  instance,  

i n  most t reatments  of quantum electrodynamics. 

check t h a t  all f i n a l  r e s u l t s  are invariant  w i t h  respect  t o  t he  r e s t r i c t e d  

gauge group generated by so lu t ions  of the  D'Alembert equation. 

It a l so  s u f f e r s  from other  
BO 

By i tsel f  it i s  not s u f f i c i e n t  t o  f i x  the gauge function a. 

2 

But then it i s  necessary t o  

However, such 



a procedure has led t o  much c o n h s i o n  i n  t he  pas t ,  both i n  quantum e lec t ro -  

dynamics and i n  t h e  theory of  superconductivity,  

To overcome t h e  above mentioned d i f f i c u l t y  one might t r y  t o  impose 

addi t iona l  conditions on t h e  A,, t h a t  w i l l  f u r t h e r  r e s t r i c t  t he  permissible  

gauge m c t i o n s ,  

so lu t ions  o f t h e  wave equation. 

s a t i s f y i n g  the  wave equation, a is uniformly bounded, it, toge ther  with i ts  

first de r iva t ives ,  falls o f f  f a q t e r  than l /r  f o r  l a r g e  s p a t i a l  dis tances  r and 

satisfies t h e  outward rad ia t ion  condition 

Fock'') has discussed t h e  question of t h e  unJquenese of 

He has shown t h a t ,  i f  i n  addi t ion  t o  

then a is i d e n t i c a l l y  zeror 

A,, bu t  are non-local in charac te r ,  

of physical  eolutione of the o r i g i n a l  blame11 equations,  

exclude a l l  advenced so lu t iona ,  

These conditions can be formulated i n  terms of the 

But more important they ras t r ic t  the c l a s s  

I n  particular they 

A more t raa tabkgauge  condition is t h e  rad ia t ion  gauge condition 

Ar s 0 
t=  

A s  i n  t h e  case of the Lorentz gauge condition the  rad ia t ion  gauge condi t ion does 

not f i x  t h e  gauge completely. 

conditione tha t  f i x  t h e  gauge function up t o  an addi t ive  constant without,  at 

t h e  same time, e l iminat ing any equivalence classes of so lu t ions  of t h e  o r i g i n a l  

Maxwell equations,  

However it i s  now poss ib le  t o  f ind  addi t iona l  

A possible  condition i s  

n A r = O  ( 9 )  r 

on a boundary surface S, Here nr(x)  is t h e  un i t  normal on S. One can ahow 



t h a t  Eqs. (8) Rnd (9) toflether with the p a r t  o f  t he  def in ing  equation ( 6 )  for  4, 

namely 

lead t o  a unique, up t o  an addi t ive constant, determination of the  vec tor  

Po ten t i a l  for arbitrary Frs a t  any time t ,  

t o  d i f f e r e n t  equivalence c lasses  we see t h a t  our  gauge conditions (8) and (9) 

do not  rule out any equivalence classes. 

Since different Frs correspond 

To prove our  asser t ion  l e t  us suppose we have found a p a r t i c u l a r  so lu t ion  

of Eqs (8) and (10) t h a t  does not yet satisfy condition (9) .  Now perform a 

gauge traneformation t h a t  i s  a covariance transformation of Eq, (a), Tbe 

gauge function of  such a transformation must s a t i s f y  

We w i l l  try t o  f ind  an u such t h a t  A I I I  = A 

For t h i s  t o  be t h e  case we must have 

t a also a a t i e f i e a  condition (9). 
r O V  

+ Era, = n* (12) 

This addi t iona l  r e s t r i c t i o n  on a i a  compatible with Eq. (11) s ince  we have t h e  

chain 

Consequently one can solve the Laplace Eq, (11) with the  Neuman type boundary 

-10- 



I 

conditions (12) e The s s l u t i o n .  is  

a(x )  = I C(x,xl)nr(x')Ar(xl)  dS' + const.  
9 

where G(x,x') i s  a Green's function sa t i s fy ing  

with t h e  boundary condi t ion 

The conditions (8) and (10) f i x  the gauge up t o  an a r b i t r a r y  funct ion 

Such a gauge transformation does not effect  A, but  does add t o  t h e  of t, 

scalar po ten t i a l  A, a term a a ( t ) / a t ,  We can f i x  a up t o  an a r b i t r a r y  constant 

by requi r ing ,  for instance,  that ,A, = 0 a t  the  o r ig in  of s p a t i a l  coordinates,  

Then s ince  

we have t h a t  

.* x 
A,(x) = I Ao,,dxr = IA(Fro + A dx' 

0 0 r ,o 

for  a r b i t r a r y  Fro. 

i s  satisfied, 

Fina l ly  we can fix t he  constant by requir ing t h a t  Eq, (12) 

While useful for m a n y  pruposes the rad..ation gauge has t h e  defect t h a t ,  

-11- 



i n  order to compute A,, and its f i r s t  few derivatives at  a point w i t h  i t a  

help it is  necessary to know FPv over e f i n i t e  region of space-time. A 

that does not have t h i s  defect i s  the so-called set of  gauge conditions 

l o n g i t u d i n a l  gauge cond ( 6 )  tion 

for a l l  xcR. For simplicity w e  aha l l  assume that the boundary of R is 

everywhere convex. Then condition (13 ) , together w i t h  the defining equation 

(10) allows one to write 
1 X 

1 0 .2 3 A2 = I F12 dx + fi ( X  , , x )  
0 

and 

where f2 and f are arbitrsry functions o f  their arguments. Since Fclv satisf'ies 3 

it follows t h a t  

(14) f - f2,3 = F 2 3 ( ~  1 = 0 )  
3.2 

In order to f i x  the functions f2 and f w e  require, i n  addition t o  the condltiop 

( 1 3 )  that 

3 

I A 2 t x  = O ) = O  
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so t h a t  f2  = 0. Then from Eq. (11,) it follows t h a t  

I 
0 3  

I where g(x , x  ) i s  an a r b i t r a r y  function of  i t s  arguments. To determine i t  

i we ,require f u r t h e r  t h a t  

so t h a t  g = 0. 

The gauge conditions (13 ) ,  (151, (16) t h t s  l ead  t o  a unique determina- 

. 4 ~ a i n  the  remaining a r b i t r a r i n e s s  t i o n  of + corresponding t o  a given Frs, 

h t h e  gauge f i x  by requi r ing  t h a t  

Then again A, w i l l  be given by Eq. (12 , 

gauge is quasi-local, 

t h e  neighborhood of a point s o l e l y  from a knowledge F 

One sees t h u s  t h a t  t h e  long i tud ina l  

One can compute Ap and i ts  first f e w  de r iva t ives  in 

i n  t h i s  neighborhood, 
P V  

IV. COORDINATE COVARIANCE 

A l l  space-time theor ies  can be made covariant w i t h  respect t o  arbitrary . 

coordinate transformations, These transformations form a group whose elements 

are spec i f i ed  by t he  four a r b i t r a r y  space-time f’unctions t h a t  def ine  t h e  trans- 

formation, The problem of formulating covariance conditions f o r  t h i s  group is  

-13- 



much harder  than i n  t h e  case of the  gauge group s ince ,  among o t h e r  t h ings  

t h e  group is no longer Abelian, 

metric tensor gllV and its der iva t ives ,  The most used o f  such condl t loae 

are t he  de Donder conditions,(7) 

Usually they involve r e s t r i c t i o n s  on t h e  

The use of these  COAditiOnS has been 

elleyated t o  a physical p r inc ip le  by Foci<. For him the  resultant coordtnates 

are t h e  analogues of t h e  Cartesian coordinates in Special  Relatj.vity. The 

d i f f t c u l t y  with t h i s  pos i t ion  of courm 1s t ha t  one i s  able t o  form scaaars  

o the r  than t h e  Riemann curvature sca la r  i n  such a coordinate system and one 

looses thereby t h e  prime J u s t i f i c a t i o n  f o r  the  f i e l d  equations of General 

Re la t iv i ty  proposed by Einstein,  We have mentioned previously t h a t  the 

de Ponder condition6 depend upon t h e  time der iva t ives  of g 

are not useful  i n  a IIamiltonian formulation of  t h i s  theory, 

they suffer from the  same defect as does t h e  Loren'cz gauge condi t ions,  

and hence 

Furthermore, 
ow 

In 

order  t o  r e s t r i c t  t he  possible Coordinate t r a n s  formations compatible with 

the  de Donder conditions one must impose boundary conditions that are 

s a t i s f i e d  only fo r  a subclass of solut ions of t he  E i n s t e i n  equations,  Fock 

argues, but  does not prove, t h a t  after imposition of  these  addi t iona l  condi t lons 

one i s  l e f t  only w i t h  the  freedom t o  perform iphomogeneous Lorentz trans- 

fomzkioiia, 

not  f o r  t he  f ac t  t h a t  not a l l  solut ions a re  compatible with the  boundry 

conditions,  

E j i s  group wouid then be Kretscnmannis i i e i a t iv i ty  group were i t  

Another s e t  of coordinate conditions t h a t  haye been used were first 

introduced'by Kretschmann(2) and la ter  used by Komar(8) fo r  t he  Purpose of 

construct ing coordinate invariant  quant i t ies .  To s e t  these conditione one 



first constructs  four  s c a l a r s  from the  curvature  tensor, (There are Just 

four such sca l a re  t h a t .  may be non-zero when t h e  Ricci tensor vanishes,)  

Let these s c a l a r s  be K One then uses coordinates such t h a t  
a 

xu = KOL ( x ) .  

These conditioris have the  lJreRt advantage t h a t  they are t r u e l y  l o c a l  conditione 

and furthermore can be e a s i l y  incorporated i n t o  a canonical scheme, 

whenever a p a r t i c u l a r  so lu t ion  E,,,, o f  the f i e l d  equations possesses an Jn t r in -  

s i c  symmetry, e .& ,  t he  Schwartzschild so lu t ion ,  one o r  more of the  s c a l a r s  

e vanish, Consequently the conditions (19) do not f u l l f i l l  Kretschmann'8 

requirement as h e ' h i m e l f  pointed out ,  

However, 

l 

A s e t  of coordinate conditions that does meet a l l  of our requirements i# 

In  a given space Riemann those leading t o  a Riemann normal coordinate system. 

coordinates are obtained by f i r s t  constructing dll of t h e  geodesics passing 

I through some point  Po. Each such geodesic can be character ized by t h e  unit 

I 

I 

Vector tangent t o  it at P 

four mutually orthogonal d i rec t ions  a t  Po. 

Po there  is only m e  geodesic that passes through a given point P of t h i r  

and hence by the  components 6' o f  t h i s  vector along 
0 

Since,  is a f i n i t e  region aromd 

region and Po# we can a s s i p  t o  the  point P the unique coordinates 

where S i s  the  geodesic distance l e t w e e n  Po and P and 6' are  the  

Components of t h e  unit tangent vector t o  t h e  geodesic passing through 
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Ir Po and P. 

P, 

a f f i n e  connection I' 

can be shown t h a t ,  i n  t h i s  coordinate system, at  any poin t  

The y are then t h e  Rieniannian coordinates  of t h e  point 

I n  t h i s  coordinate system it i s  w e l l  known t h a t  all components of the 
CI 

Pa 
vanish a t  t h e  or ig in  ( t h e  p o i n t  Po). Furthermore, i t  

Conversely, i f  eq. (20) i s  s a t i s f i e d  at a l l  points  and t h e  components of t h e  

a f f i n e  connection oahish at  t h e  o r ig ih  thch w e  have a Riemannian coordinate 

sys  tern. 

L e t  us consider these  conditions ( 2 0 )  on a space-like hypersurface where 

yo is  t h e  t ime-l ike coordinate correspondinq t o  the  time-like d i r ec t ion  at Po. 

They can be Written i n  t h e  form 

and 
3 u  1 6  r Y Y = P  

rs 

3 s  
where rrs tire the  C r i s t o f f e l  symbols constructed from the  three-dimensif n a l  

rs metr ic  grs and i t s  inverse e induced on t h e  hypersurface by t h e  four-dimensional 
rs 

has shown tha t  t h e  momentum dens i t i e s  p canonical ly  (111) Now Dirac 

Gs are  r e l a t ed  t o  rrs by t h e  r e l a t i o n  

P P  metric  g 

conjU@;ate 0 



where 8 l a  t he  determinant of qS. nus condition (21) can be rewri t ten as 

1 ab r s 
- - g  Q ) P  Y Y  = o  (%agsb 2 rs ab (24) 

l 
and is thus seen t o  depend only on t h e  canonical var iables  grsand prsand t h e  

coordinates.  
I 

Condition (24) is h e a r  i n  prs and so can be solved f o r  one of i t s  com- 

ponents in-terms of the  o ther  thus leading t o  the  el iminat ion of t h i s  var iab le  

and i t a  conjugate from consideration as dynamical f i e l d  var iab les ,  

(22) i s  st i l l  too  complicated f o r  such pruposesI 

because of condition (22)  t h e  yr form a Riemannian coordinate system on t h e  

hypersurface yo = 0. We now make use of a r e s u l t  due t o  Vermeil (lo) t h a t  t he  

metr ic  on t h i s  hypersurface must be of t h e  form 

Condition 

However w e  no t ice  t h a t ,  

a b u v  
= E  E h Y Y  + g r s  %s rail ebv (25) 

0 
where erau is t he  Levi-Civita tensor  density of  rank three  and grs is t he  

three-dimensional metric a t  the  or ig in  and equal t o  

this equation by y 

If we multiply 
s 

and sum we have tha t  

88‘m a l t e r n a t e  form of the  coordinate conditions that lead t o  Riemannian 



coordinates on the  hypersurface. The conditions (26)  are now l i n e a r  i n  

and can thus be solved f o r  th ree  of  its components i n  terms of the  o ther  

three.  Thus w e  have succeeded i n  finding a s e t  of  coordinate conditions appli- 

cable t o  t h e  hypersurface yo f 0 t h a t  satisfy a l l  of  our requirements s ince,  

as ide  from picking the  point  P 

coordinate system the re ,  Riemannian coordinates are uniquely determined i n  a 

f i n i t e  region a romd Po. 

and the construction of a l o c a l  orthogonal 
0 

Our construction is s t i l l  not  complete however s ince  our conditions ( 2 4 )  

and (26)  only apply on the  hypersurface yo = 0. 

i n  the rest of space-time by f i r s t  drawing t h e  geodesic t h a t  passes through 

Pa and ie taneent t o  t h e  time-like axis there .  

throughout t h e  f i n i t e  region of space-time considered. 

W i l l  duet be equal t o  t h e  proper-time figured from Po as t he  s t a r t i n g  point ,  

Taking now some point  on t h i s  ax i s  w e  use it for t h e  o r ig in  o f  a new Riemannian 

coordinate system. 

a’ space-like hypersurface through t h i s  point and normal t o  t h e  tanger t t o  t h e  

yo axis at t h i s  point. 

s a t i s f i e d  on t h i s  new surface.  Since it is uniquely defined these  conditions 

w i l l  l e a d  t o  a unique coordinate system on t h i s  surface.  We see t h a t  i n  t h i s  

manner w e  can construct  a unique coordinate system t h a t  e a t i s f i e a  a l l  of our 

b a s i c  requirements by .requiring t h a t  (24 ) and (26 ) be s a t i s f i e d  everywhere i n  

our space-time domain. 

We can fill i n  coordinates 

This l i n e  w i l l  be our  yo ax i s  

Times measured along it 

Following t h e  procedure employed at t h e  o r ig in  w e  construct 

We then  require t h a t  conditions (24 ) and e6 ) be 

There remains now only the  question of  t he  charac te r iza t ion  of the  point  

Po and t h e  four  mutually orthogonal direct ions a t  Po used t o  def ine t h e  components 



I of t h e  tangent vectors  t o  t h e  geodesics pasaing throuFb t h i s  po in t ,  If 

t h e  metr ic  i t se l f  has symmetriea it w i l l  i n  general  be impossible t o  

characterize these  quan t i t i e s  uniquely. For our  purposes however it I s  

only necessary t o  f ind a method t h a t  does not exclude these  symmetric 

eolut ione even though it does not  l ead  t o  a unique charac te r iza t ion  it) 

these cases, 

we used t h e  condition ( 2 )  . 
t h e  abeolute value of t h e  curvature  sca l a r  is  an absolute minimum. The ortho- 

gonal d i r ec t ions  at Po could t h m  be fixed by taking ~ j r ad ien t s  of  t h e  sca l a re  

KO at  t h i s  po in t ,  

does not  rule out t h e  case when 

Po In t h i s  case,  

before  we impose i t )  t he  grovp of  transformntions leading from one coordinate 

This w a s  j u s t  t h e  procedure we followed i n  the  gauge case when 

One p o s s i b i l i t y  is t o  pick Po as t h e  poin t  where 

The condition tha t  Po is  t h e  point  where IRI is a minimum 

has no minimum, it j u s t  doesn't determine 

However, once we impose t h i s  condition (and i n  f a c t ,  even 

SYStem s a t i s f y i n g  conditions ( 2 4 )  and  (26)  t o  another no longer involve 

Wlifonn t r ans l a t ions .  

we no longer  have t h e  p o s s i b i l i t y  of  performing homogeneous Lorentz t ransfor-  

InatiOnS. 

?iitereGting 8 e i a t i v i t y  eroup f o r  General Rela t iv i ty  a n d  c e r t a i n l y  do not  lead 

t o  t h e  inhomogeneous Lorentz group. 

Likewise,  by f ix in6  t h e  orthogonal d i r ec t ions  a t  Po 

I n  any case the  coordinate conditions (24) and (26) do not  l ead  t o  an 

If one were t o  res t r ic t  oneself t o  Special  Rela t iv i ty  one could not use 

t h e  metr ic  alone t o  r e s t r i c t  t h e  covariance group beyond the  inhomogeneous 

Lorentz group s ince  t h i s  is  j u s t  t he  symmetry group o f  the metric i n  t h i s  case. 

However one can make use of other dynamical o b j e c t s  t o  e f f e c t  a fur ther  reduction. 

(1ie asaume there  are such objec ts  avai lable  s i n c e  t h e  case o f  a n  empty f l a t  space 



l e  not very in t e re s t ing . )  Thus ,  i f  we had ti s c a l a r  f i e l d  Q we could proceed 

I t o  u8e it i n  place of the  curvature sca l a r  R but following t h e  same pro- 
I cedure as out l ined  i n  t h e  above paraeraph. Consequently, eyen i n  S p e c i d  

Rela t iv i ty  it i s  seen t h a t  the  maximal s e t  of coordinate conditions i s  

s u f f i c i e n t  t o  reduce the  covariance group t o  the ident i ty .  
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V, CONCLUSIONS 

We have seen, i n  the  two important cases of electrodynamics and r e l a t i v i t y  

theory,  how it i s  possible  t o  impose a number of  covariance conditions on t h e  

theory s u f f i c i e n t  t o  reduce the respective covariance groups from gauge 

groups t o  a t  most L i e  groups on a f i n i t e  dimensional parameter space. Ther), 

depending on the var iab les  ava i l ab le  f o r  t h e  purpose one can e f f e c t  a fu r the r  

reduction of t he  covariance group down t o  t he  i d e n t i t y  transformation. In 

e f f e c t i n g  t h i s  addi t iona l  reduction one must be sure  t h a t  no physical state 

of t h e  system i s  eliminated thereby, 

f i n a l  reduction provided one has a source f i e l d  f o r  t h e  electrodynamic f i e l d .  

In electrodynamics one can effect t h i s  

I n  g rav i t a t iona l  theory the  s i t u a t i o n  is  l e s s  c l e a r  because of t h e  ,g rea te r  

complexity of t h e  covariance group involved, However it appears ce r t a in  t h a t  

one can always e f f e c t  a reduction t o  a group which i s  a t  most a subgroup of 

t h e  Poincare group. 
t 

Aside from t h e i r  per t inance t o  the general  problem of  the  reduction of 

t h e  number of dynamical f ields i n  theor ies  w i t h  gauge groups these  conclusions 

bear  on Kretschrnann's de f in i t i on  of the Re la t iv i ty  group of a theory. A t  least 

as it stands the  de f in i t i on  does not lead t o  the  des i red  group of  t he  theory,  e.g. 

t he  Poincare group f o r  space-time theor ies ,  but r a t h e r  leads t o  the  t r i v i a l  
t 

group of the i d e n t i t y  transformation. While we have been unable t o  pro-\,e such 

a conclusion f o r  an a r b i t r a r y  convariance group it seems t o  be t h e  case. 
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I. INTRODUCTION 

An expression for the Hamiltonian of general rela- 
tivity has been given by Dirac’ that is especially simple 
in form and so allows one to proceed further with the 
study of the canonical formalism of this theory than 
was possible using the older, more complicated expres- 
sions for this quantity.2(a)B(b) This Hamiltonian is 
given by 

a = / { ( - p ) - t X L + g & ]  d 3 X J  (1.1) 

where XL is the Hamiltonian constraint of the theory 
and Xr are the longitudinal constraints. They have the 
form 

and 

where is the momenta conjugate to the spatial 
part of the metric g,,l K2 is the determinant of g,,, 
and 3R is the scalar curvature formed from gr,.3 

As it stands, the Hamiltonian (1.1) is incomplete 
because of the appearance of go, in it. In  the formula- 
tion given by Dirac that leads to this Hamiltonianl 
the momenta Po’ conjugate to go,, vanish weakly. This 
has as B consequence that the degrees of freedom 
associated with go,, disappear from the Hamiltonian 
formalism. It therefore becomes necessary to assign 
values to the go,, by some means in order to make the 
Hamiltonian definite. The method of assignment has 
varied from author tc? ~nthnr zzd has :esu!te:! ir. 
seeming disparate expressions for the Hamiltonian. We 
discuss here the various methods used to fix the go,, 
the Hamiltonians that result therefrom, and the 
relations between these various methods. 

XL=K-1(gr~g,b-3g,,g~)pr.pab+K(aR) (1 -2 )  

Xr=pl.l., (1.3) 

11. COORDINATE CONDITIONS 

I n  all the methods that we discuss here the values 
of the go,, are fixed by the introduction of coordinate 
conditions into the theory, albeit not necessarily in the 

* Supported in part by NASA Grant NsG326 and Air Research 
and Development Command, United States Air Force, WADD 
through its European Office. 
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We follow here the notation used by Dirac in his papers. Latin 
indices run from 1 to 3 and represent the spatial part of an index 
sct. Indices are to be raised or lowered with the help of gr.. The 
notation 1s indicates the three-dimensional covariant derivative 
formed using gr,. Finally, we use a metric with signature +2. 

most obvious manner. One might imagine that the 
simplest thing t o  do would be to require that one 
always work in a coordinate system in which the go,, 
are specific space-time functions.‘ Thus one might 
introduce a Gaussian normal coordinate system. in 
which go,,= -tio,,. Such a coordinate system can be 
shown to always exist in every finite region of space- 
time that is topologically Euclidean. 

There are, however, a number of reasons why one 
does not assign values to  the go,, directly. For one thing 
it does not fix the coordinate system uniquely. In 
general it leaves arbitrary one surface 3Lp= const as well 
as the coordinates in that surface. I n  order to remove 
this arbitrariness it is necessary to impose additional 
conditions on the metric and its derivatives on a tO= 
const surface. Since the values of the gm are already 
fixed this means that these additional conditions must 
involve the gr8, the p”, and their spatial derivatives. 
Thus one might require, as does Dirac,6 that one of 
the P= const surfaces should have a maximum three- 
dimensional “area.” This condition can be expressed 
in terms of the g,, and pll, by requiring that 

$E g,,p’”zo. (2.1) 

To fix the coordinates within this surface we could 
require ir. addition that the hamionic Conditions in 
three dimensions, 

( Kera) , , z O  (2 .2 )  

be satisfied. Here era is the inverse of the matrix formed 
from g,, : 

While we are free to impose these conditions on any 
one P=const surface, they will not, in general, remain 
satisfied on the other P= const surfaces since their 
time derivatives, formed by taking their Poisson 
brackets with the Hamiltonian (l.l), will not vanish 
weakly, either as a consequence of the coordinate 
conditions (2.2), (2.3),  or the secondary constraint 
equations 

and 

It would thus be extremely awkward to  work with 
such conditions in studying the dynamical evolution of 
a metric field. 

emgall = ti,*. (2 .3 )  

X L Z O  (2 .4)  

XWO. ( 2 . 5 )  

4 See, for example, P. C. Bergmann and A. I. Janis, Phys. Rev. 

6P. A. M. Dirac, Phys. Rev. 114, 924 (1959). 
111, 1191 (1958). 

001 
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The dilliculty that the secondary coordinate condi- 
tions (2 .0) ,  (2.4) do not remain satisfied in the course 
of time if we first assign values to the go, is directly 
related to a second ditliculty of this way of doing things 
and is associated with the existence of the secondary 
const raints (2.4) and (2 .5) .  They arise as a consequence 
of requiring that Po* vanish weakly throughout the 
temporal evolution of the metric field. Since they 
depend only on the gr. and pra they represent restric- 
tions on the values that one can assign to these quan- 
tities initially. Furthermore, since ~ C L  and .7cr are gen- 
erators of infinitesinial coordinate transformations,s all 
physical observables, which are a fortiori invariants, 
must have vanishing Poisson brackets with the XL and 
Xr. The construction of initial conditions and ob- 
servables is therefore greatly complicated by the 
existence of the secondary coiistraints. Furthermore, 
the existence of constraints such as (2.4) and (2.5) 
implies that not all of the apparent degrees of freedom 
of the field are real. As in the electrod.mamic analog 
where only the transverse components of the field 
represent dynamical degrees of freedom of the field, 
only a subset of the gr., prm represent true tlynaniical 
degrees of freedom of the riietric field. 

In attempting to overconie these difficulties as- 
sociated with the existence of the secondary con- 
straints, many authors have made use of coordinate 
conditions. I t  is clear, for instance, that once a co- 
ordinate system is f i x d ,  aiiy functional of the g,, and 
pr8 constructed in tliat coordinate systeni is an ob- 
servable. However for this purpose of constructing 
observahles tlie coordinate system must be tiscd up to 
a point where any additional arbitrariness resides in a t  
most a finite dirncnsional Lie group of trarwforiii. &t t ' ions. 
Thus it would not do simply to assign values to the 
go,; we must iiiipose additioiinl, secondary conditions 
such as (2.1) and (2.2) on the grJ and pra. If thcse 
conditions would remain satisfied throughciut t he course 
of time then we could alleviate to some extent tlie other  
above mentioned dificulties. In part icular w e  could 
then use the conditions on the g r l  and pra together with 
the constraint equations ('2.4) and ( 2 . 5 )  to climinate 
the nonphysical degrees of freedom from the field 
equations for the metric as is clone in electrodynarnic.~. 
There the Coulomb gauge condition V . A =  0 together 
with the secondary constraint V . P =  - p  is i i w i  to 
cliniinate the Ion[-itudinul c-oruponcrits of t tic vector 
potential AL and tlie conjugate riioweritit PI, Il-om the 
theory. If we could effect tlik eliniination of the noli 
physicd ckgretss of frccilorii of the nicbtric tic+l through 
the use of ,w(irdin:tte coiidit ion \ ,  tlicti the rciiiainiiig 
dcgrcw of frccdoni wi.)uId constitute tlic p h b  sicxIIy 
observal)lc [)arts of thc iiietric and at the s;tiiit~ time 
could bc. ;ts+gitd arbitrary ( to  the extent that t h v  
rrality coriditions un the metric are not violated) 
i n i l i d  valut:h. 

(19.5 I )  

-. . .. 

" J .  I.. ..\nclerviii and 1'. C;. Hcrgrii:uiii, I'hys.  KC^. 8.3, 1018 

If we are going to introduce coordinate condition 
into the theory we see that we would like them to 
involve restrictions on the g,, and that remain 
satisfied in the course of time. In  almost all of the work 
that involves coordinate conditions this is accomplished 
by determining values for the go, that keep the 50.. 
ordinate conditions satisfied once they are satisfied 
initially. In  other words, one first decides upon the 
conditions that involve the g,, and and then finds 
those values for the go,, that maintain these conditions 
in the course of time. Thus in electrodynamics, the 
Cuulornb gauge condition v . A = O  will remain satis- 
fied in the course cf time provided we require that the 
scalar potential I$ satisfies -Q2+=p. Had we started 
out by setting + = O ,  we could still have found a gauge 
in which v - A = O  at some one time but, because of the 
field equation - v .  (dA/dt+v+) = p ,  it would not re- 
main zero in the future. It should be noted that, while 
neither the condition V.A=O nor the condition 
- c"+=p is sufficient by itself to  fix the gauge, the two 
together, along with the boundary conditions that 
+=O and'n-A=O on the boundaryof the spatial region 
und  - investigation ( n  is the outward directed normal 
to  this boundary) are sufficient to fix the gauge up to 
an arbitrary constant, which is the best we can hope 
to  do. 

In general relativity, various authors h a w  used 
dilfercnt types of conditions and have woven them 
into t he cannonical formalism in different ways, leading 
t o  what appears at first sight to  be unrelated expres- 
sions for the resulting Hamiltonian for the theory. The 
coordinate conditions fall into two main classes, those 
which involve the coordinates themselves such as 
those I)y Arnowitt, Dcser, and hfisner7 anti Ikrgniann 
and Koiiiarx and tlinsc which do not and which are 
used by I)iracy and the a1ithor.l" 

111. MODIFIED CANONICAL FORMALISMS 

'I'hc usc made of coordinate conditions varies from 
author t c  author and depends upon the type of co- 
ordinate conditions eniploved. We give a brief survey 
of thcse different approaches in this section and then 
show their equivalence in the next section. 

Dil-ac was the first to  set up a formalism'l that would 
allow one to make explicit use of coordinate conditions 
in thc canonical forrnalism of general r t h t  ivity. Eli5 
tlietliod is general enough to be applica1)lc to ;ill t!;pcs 
of co~irtiinate conditions. Furtliermorc, ;is we shall 
show, thr other appro:tches arc all vari:trits on (hi,  
gc.iii.nl nnr~thud. We thi:rc.forc hegin our survey with a 
d c ~ . ~  ii'iion of this tr iet  I d .  
- .  . 

' I<. . i r n o w i t t ,  S. [ ) c w r ,  ant1 ('. W M i s n c r ,  l 'hys. Kev. 116, 

P. ( i .  I<crgrii;irin 2nd A. K ~ i i i a r ,  I'tiys. Kcv. Ixtters 4,  4.$1 

f'hvs. R r b . .  114, 024 (10S' ) ) .  

1.321 (10s' ) ) ;  I'hys. Rev. 117, 1505  ( lO(10) .  

( l ( J ( 1 0 ) .  
' 1'. :\. $1. 
lu J .  1.. Rlldt.rstjn, I.rs 7'hrorirs Reldiiiisks de Id G r t w ; f d o r i  

((.'critrc N:rtiolial de la Ktchcrclw Scientiliilur, Puis, ~(RJ?) ,  
p. 3 7 2  

" 1'. A. M. Dirac, Can. J. Math. 2, 129 (1950).  
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A. Dirac’s Method 

In order to  make use of the constraint equations 
(2.4) and (2.5) to eliminate a corresponding number of 
degrees of freedom from the theory they must somehow 
be converted into strong equations. (In Dirac’s termi- 
nology, an equation is considered weak if its satisfac- 
tion violates the basic Poisson bracket relations of the 
theory while a strong equation is consistent with these 
relations). One cannot use them directly for this 
purpose by, for example, solving them for some of the 
canonical variables in terms of the others and making 
use of these solution to  eliminate the variables solved 
for from the Hamiltonian. By doing so one would 
change the equations of motion of the theory since, 
as they stand, the constraint equations are weak equa- 
tions and so can be used to  eliminate variables from the 
theory only after all Poisson brackets have been com- 
puted. 

In order to  convert the constraint equations into 
strong equations nirac introduced a new type of 
bracket expression into the theory which we shall 
refer to as a Dirac bracket (Db) in contradistinction to  
a Poisson bracket (Pb).  The ability to introduce these 
new bracket expressions into the theory depends upon 
the concomitant introduction of coordinate conditions 
into the theory. Because the coordinate conditions must 
sinxle out a particular coordinate system, given the 
values of the metrical quantities, they cannot be an 
invariant and consequently they must have non- 
vanishing Phis with the constraints and X’. They 
have the effect of converting the constraint equations 

of a first-class constraint with all the other constraints 
and the Hamiltonian must vanish weaklv) into second 
class constraints (some of the Pb’s with other con- 
straints do not vanish even weaklv) i f  the coordinate 
conditions t h e m s e ! ~ ~ ~  XP ::~n:,idcii:d to he coxiiaiiiis. 

T o  define D b  r;xi>rt:siions we first compute the Pb’s 
of all the second-class constraints of the theory with 
each other. Let us call all of the second-class constraint 
equations of the theory x equations and distinguish 
between the different X’S by an indexs that can and 
will take on both discrete and continuous values. We 
next construct the inverse can# to the matrix [x., xn#] 
of the Pb’s of the x’s with each other. It satisfies 

C-,. I I U ~  what Dirac caiis first-ciass constraints ( the I’b’s 

C , d [ X d ,  xu,<]= b, (3 .1 )  
where & n l t  is a generalized delta, i t . ,  a Dirac delta 
function when s and s’’ vary continuously. The matrix 
c,,, was shown by Dirac to  always exist provided that 
no liiiear combination of the x’s is first class. The D b  
of any tv+o iunctionals A and I5 of  the canonical 
variailic.5 i:, !Irc!il tlcfined by the equation 

[ A  I B I D =  [ A  I Xa]Cua,[Xa(, n]+[A, A] ( 3 . 2 )  

where the bracket expressions appearing on the right 
side of this equation are ordinary Pb’s. nirac has shown 

that the Dh’s satisfy all of the usual relations, e.g., the 
Jacobi identity, satisfied by the Pb’s. Furthermore, and 
this is the main reason for introducing them, the D b  
of a x with anything is automatically zero as can be 
seen immediately from the above definition. As a 
consequence one can now consider the x’s as strong 
equations and can be used before a Db is calculated. 

A particular simplification in the construction of 
Db’s occurs when one or more of the x’s are just the 
canonical variables p themselves so that the corre- 
sponding equations of constraint look like 

where p ,  can be either a momentum or coordinate 
variable. Then, since Eqs. (3 .3 )  are supposed t o  be 
second-class equations, the canonical conjugates q, 
must appear in enough of the other x equations to  allow 
us to solve for these variables in terms of the remaining 
variables so that we have 

where Q and p represent the remaining canonical 
variables. In  this case the D b  reduces to  an  ordinary 
P b  where Eqs. (3.3) and (3.4) have been used as 
strong equations to  eliminate the p ,  and q, from the 
quantities whose D b  one wishes to compute and where 
differentiations are only with respect to  the Q’s and 
p’s. Here one accomplishes a reduction in the number 
of degrees of freedom of the system directlv. In  the 
more general case one retains all of the original ca- 
nonical variables but the use of the Db eEective!jr 
takes account of the fact that constraint equations 
together with the coordinate conditions effectively 
serve to reduce the number of degrees of freedom of the 
system. 

In order that one can replace the Pb’s by Db’s in the 
theory it is necessary that the equations of motion are 
not altered and this is the case provided that the Pb’s 
of all the x’s with the Hamiltonian of the theory vanish 
at least weakly. If this is so then 

= g  

showing that one can indeed use the Db’s in construct- 
ing the equation of motion for any dynamical variable g. 

In applving the above procedure to  the case of 
general rel:ttivity nirac. introduced the coordinate 
condition (2 .1 )  into the theory as an additional con- 
straint on the canonical variables. While the Pb of p 
with the X‘vanishcs its Pb  with X I ,  does not. Thus ~ C L  
is converted into a second-class constraint. Dirac then 
introduced a new set of canonical variables that include 
p ,  its conjugate I n  K where K =  K l ,  pra= K ~ ( Y - -  :per.) 
and Qr.= R , , / K ~ .  He then indicated that one would pro- 
ceed by solving the constraint iqualions 31‘,,=0 for 
In K in terms of pru and &.. However, at this point a 
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difficulty occurs that is not common to other theories 
with constraints. The Hamiltonian of general relativity 
(1.1) is a homogeneous, linear functional of the con- 
straints so that one cannot simply substitute the ex- 
pression obtained for In K by solving the constraint 
equations directly into the Hamiltonian since this 
would lead to a vanishing modified Hamiltonian. T o  
overcome this ditficulty Dirac rewrote the Hamiltonian 
(1.1) in the form 

n = H m u i n + J [ {  (-$o>-’- 1 ) ~ L + g 0 , ~ r l  d3x, (3.5) 

where 

Hmain= {EL- (K-l(K2er8), I ) ,  s) d3x. 1 
This means that the Hamiltonian of Eq. ( 3 . 5 )  differs 
from that of Eq. ( 1 . 1 )  by a surface term. Adding or 
subtracting such a surface term from the Hamiltonian 
does not change the equations of motion computed 
directly from this Hamiltonian. However, Arnowitt, 
Deser, and Misner12 have argued that the effective 
Hamiltonian obtained after the elimination of degrees 
of freedom from the theory by direct substitution might 
depend upon which complete divergence is subtracted 
from the original Hamiltonian ZI. 

If we could be sure that we could treat the equations 
p ~ 0  and X L ~ O  as strong equations then, of course, 
it would be ininlaterial which divergence is subtracted 
from H .  However the following argument shows that it 
is not completely obvious that we can treat these equa- 
tions as strong equations. In order for this to be so 
two conditions must be met. First, both p and XI2 must 
have weakly vanishing I’b’s with H (either Zl will do 
for this condition to be met) and scconu, the Pb  matrix 
[ p ,  XL’] must possess an inverse. But we see that 
these two conditions are in fact incompatible with 
each other. Thus, to satisfy the first condition we must 
have 

[ p , H ] = / {  ( - g V [ p , X ~ ’ l  d3x=0 (3 .6)  

which we could imagine being satisfied by an appro- 
priate choice of gw. However, if [ p ,  XL’] were to  
possess a n  inverse we could conclude that g” would, in 
fact, have to be zero. It would not do to have goo zero 
as this would imply, among other things, that the 
dctcrminant of g,, is singular. We must have, therefore, 
that the rnatrix [ p ,  XI.’] is singular. In fact, whenever 
one iinposes coordinate conditions that do not explicitly 
depend upon the coordinates one must make sure that 
the 1% matrix formed using these conditions and the 
constraints is singular or else we would be forced to 
set gW= 0 in order that the coordinate conditions remain 
satisfied in  the course of time. The quantity (-p)-’ 

K. Ariiowitt,  S. &her, arid c. W. Misner, J. Math. Phys. 
I ,  434 (1060). 

is then determined by requiring that it be a null vector 
of the Pb  matrix. 

One can check that in the present case the I’b matrix 
does in fact possess null vectors since, when we work 
out the Pb  in Eq. (3.6) we obtain an equation for 
( -Roo) - ’  which in general possesses nonzero solutions. 

If it is true that the PI) matrix is singular, then we 
cannot construct its inverse in the usual fashion and so 
cannot construct the corresponding Db’s. Note that 
in Dirac’s proof of existence of an inverse it was neces- 
sary that no linear combination of the x’s used in 
constructing the P b  matrix was first class. But in our 
case, the linear combination I( - $ 0 ) - $ 3 C ~  d3x is still 
first class so that the condition for the existence of an 
inverse is violated. One could try to work only with 
those Combinations of constraints and coordinate con- 
ditions that are second class. To do this it would be 
necessary to introduce a complete set of functions 
g ( x ,  x’) such that lg(x, x’) (g’”) -+d3x’=O and work 
with the reduced set of constraints Jg(x, x ’ ) X ~ ’ d ~ x ’  
instead of the X L  in constructing the 1% matrix with 
the P I S .  While this matrix would be nonsingular and so 
possess an inverse one would still have to show that one 
could determine In K in terms of St. and pr8 from the 
reduced set of constraints, in order to justify the direct 
elimination, of p and In K from the theory. Rather than 
do this we shall show directly that the equations of 
motion obtained by direct elimination are equivalent 
to  those obtained before the redundant variables are 
eliminated. 

To demonstrate the equivalence between the two 
sets of equations of motion let IZ* be the  Hamiltonian 
obtained from H given by Eq. ( 3 . 5 )  by setting p = O  
and substituting in for In K the expression obtaincd by 
solving for this quantity in the constraint equation 
XL=O in terms of grS and p .  Then the time derivative 
of any functional F(&,  p”) is given, when we use H* 
as our Hamiltonian, by 

P = [ F ,  H * ] .  ( 3 . 7 )  

I n  computing [ F ,  H*] we must keep in mind that the 
Sr. and pr8 appear in H* both as they appear in 11 
directly, and through the factors In K that appear in ZI. 
Thus we have that 

where we have made use of the chain rule for I’oiswn 
brackets and where a * after a quantity means that 
it is t o  be evaluated by setting p = O  and In K equal t o  
its value in terms of tjr8 and p. It is this expre5sion for 
F that we must compare with the one obtained using 
H directly and then starring all quantities, that is, w i t h  
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the equation 

We have that 
P =  [F, HI*. (3.9) 

[ F ,  H]*=[F, Hm.in]*= 

+ F, go,X’d3x *, (3.10) 

where we have introduced the abbreviation No for 

We see that the first and last terms on the right-hand 
side of Eq. (3.10) agree with the first and last terms 
on the right-hand side of Eq. (3.11) so that all we 
must do is to show that the middle terms are equiva- 
lent. For this purpose we expand XL in a functional 
Taylor series about In ~ = l n  K*. Since X&=O we have 

EL=- [p‘,XLI*(ln K‘-ln~’*) d3x ’+ . . .  . (3.11) 

Then we have 

[/ 1 
( (--P)+-- 1 I .  

/ 

[ F ,  / N & L  d 3 x ] * = / N . C F ,  XL]* d3x 

= //NO[#’, XL]*[  F ,  In K’*] d3x d3x’. 

(3.12) 

NOW we note that we can rewrite Eq. (3.6) in terms 
of NO as 

CP’, Hmain]*+Po[p‘, XL]* d%=O. (3.13) 

Substituting into the right-hand side of Eq. (3.12) we 
have 

[ F ,  / N & L  d3x]=  - / [ F ,  In ~ ‘ * ] [ p ‘ ,  Hmain] dsx’ 

(3.14) 

which proves the desired result that [ F ,  HI*= 
CF, H*l. 

To complete the elimination of redundant degrees of 
freedom from the theory Dirac requires, in addition 
to the condition p = O ,  the conditions 

( Kzera) ,.= 0. (3.15) 

He uses these conditions rather than the harmonic 
conditions (2.2) since K2era has a vanishing Pb  with p 
while Ker* does not. The use of the conditions (2.2) 
would require a change in the Pb relations between 
nongravitational variables when one goes over to 
Db’s while the use of the conditions (3.15) would not. 

liather than use the conditions (3.15) to eliminate 
additional degrees of freedom directly as before, Dirac 
chooses to introduce the Db’s in this case and obtains 

an approximate solution for the inverse of the Pb 
matrix. 

In discussing Dirac’s procedure for eliminating 
redundant degrees of freedom from the theory we have 
worked with the variables K, p ,  or, and p... They have 
the advantage that the Xr can be expressed directly 
in terms of the or, and p.. since they do not depend 
upon K .  This also allows one to eliminate the degrees of 
freedom associated with XL before dealing with those 
associated with Xr since p has a vanishing P b  with the 
X’. In the more general case one would introduce a 
twelve independent functionals of the original canonical 
variables g,, and p” grouped into three sets of four 
each according to the scheme 

[Era, p”)  * ( g A ,  p” ; g,; p’] A = 1, 2 ; &= 1, ’ * , 4. 

(3.16) 

The four functionals g,, p’ are solved for in the con- 
straint equations (2.4) and (2.5) and are referred to  as 
the “solved for” variables. The four functionals g, are 
used to impose the coordinate conditions and are called 
the coordinate variables. Finally the remaining four 
functionals g ~ ,  pA that describe the dynamical evolution 
of the system are termed the dynamical variables. In 
general we would want g, and p’ to be conjugates of 
each other and have vanishing Pb’s with the gA and p“. 
Then if we require that 

g,=O (3.17) 

as coordinate conditions, we again must have the Pb  
matrix formed with the g,, X L -  and the X’ be singular 
in order to avoid requiring that (-$o)-f be zero in 
order t o  insure that the conditions (3.17) remain 
satisfied in the course of time. The proof that one 
can treat these equations together with the constraint 
equations as strong equations is then only slightly more 
complicated than in the previous case. 

B. Anderson’s Methodlo 

The method devised by the author to eliminate 
redundant degrees from the theory differs in approach 
from that used by Dirac although not in the final 
results. To simplify the discussion we work with the 
Dirac variables In K ,  p ,  and pr8 although again this 
imposes no serious restrictions on the procedure and 
it can be carried through with only slightly more 
trouble in the more general case of the scheme indi- 
cated in (3.16). Again we solve the equation XL=O 
for In K in terms of gr, and pr.. We now introduce in 
place of In K a new variable X through the equation 

In K=ln K*+X, (3.17) 

where a * after a quantity has the same meaning as 
before. Setting X=O is equivalent to treating the 
constraint equation x L = O  as a strong equation. We 
now determine (-g“o)-i in H given by Eq. (3.5) by 
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the requirenient that A appears in [I only to hixher 
powers than the first. i\ny facfors of A higher thaii thc 
first do riot contribute to the equations of iriotion when 
we set X = O  after the 1'11's have been coniputtrd. 'I'hus 
the cffcctive Hamiltonian f o r  the theorv is jus t  Il* 
again. 'To show that this eifective IIaniiltonian gives 
the same equations of motion as the original one we 
niust first determine (-goo)-.' to use in the original 
Harniltonian. 

When we substitute into IZ for In K using Eq. (3.17) 
and expand atlout X = O  we obtain 

II=lI*rnain+J[p, IInuin]*A d3x+. * . 

- -  
+ / / N O ' [ ~ ,  XI,']*~ d3x d3x'+ a a ., (3.18) 

where the dots indicate the terms containing higher 
powers of X than the first. We see that the terms 
linear in A can be mad(: to  vanish by choosing N o  such 
that it satisfies the equation 

We see that this is just tlir: same coiitlihn (3.13) used 
to  fix N o  so that [ p ,  [I] is agxin zero. In the present 
case, since In K no longer appears in the Haniiltonian 
except through powers of A higher than the first we can 
conclude that [ p ,  El] is again zero. Thus the two 
methods are entirely ccIuivalent and we do not need to 
give a separate proof of the consistency of our riicthod. 

So far we have used coordinate conditions that do 
not depend explicitly on the coordinates, e.g., we have 
set p = O  or inore generally would set the coordinate 
variables of (3.16), the g,, equal to zero. In order to 

I;..\' 
that the 1% matrix of the p1 with X I ,  and the 3C' have 
a t  least one null vector. We n o w  examine a nunit)or of 
procedures that make usc' of coordinate conditions that 
depend explicitly on t he coortlinatvs. 'l'hus, Ariiowitt , 
Deser, and Misner (referred to in what follows as 
ADM) take as coordinatc conditions. 

insurc: the consistency of t ! ~  ap1)iix::.h it * , V ; I ~ ~  n 

g,M.v'. (3.1')) 

llergiiiaiiii and k'oiii; ir (rcfcrrcti to  hcrcafter ;is I i K ) ,  
altliough they (lo no1 c.xl)lic.itly iiitrot1uc.e new variahlvs 
as in I([. (3.16), woIk in  a c'oortlin;itc systeiii in w l i i c . h  
ttie coordiriates at a Iwiiit of t he sl)iice-tinie ni;inifoI(i 
are nuiiiericdly eclual to  thc v:tlues of tlic. four scalars 
ont: can f o r i i i  f r o i i i  the grv  and their first am1 sc.c~)nd 
derivatives that do not vanish when K,,z- O . I S , I 4  In 
either case thc rctpirenwiit that the coordinate con- 
ditions remain satisfied throughout the course of time 

la I<. Krctschniiirin, Airii. I'hysik 53, 57.5 (1917). 
" A. Koinar, l'hys. Kev. 111, 11x2 (195X). 

is now that 

or 
6,4= [S ' ,  I11 ( 3 . 2 0 )  

Now the 1'1) matrix of ttie g, with the comtraints 
should poises, an inverse in order to tie able to  detcr- 
mine ( -gm) 8 antl gOr from Eq. (3.21). V\'e now rliz- 
cuss how these types of coordinate conditions are used 
by BK and AUM. 

C. The Method of Bergtiifinn and RomarX 

In  general the P b  matrix dcpcnds upon 6 functions 
and their tierivatives so that Eqs. (3.21) become a set 
of coupled differential equations for the ( - R O O ) - (  and 
gor. Similarly, to find the inverse to the Pb niatrix one 
must in general solve a set of coupled diflerential equa- 
tions. However, RK observed that in thc special case 
where the g, are all L,c.a!arC: the Pb matrix i i i v d b - L i  ai!;- 

6 functions and not their derivativcs. Tlic rc:i~.oii for this 
lies in the fact that the XL and Xr are the generators of 
coordinate transformations and the transformat ion law 
for scalars does not involve the derivatives of the 
descriptors (the arbitrary functions) of the transfornia- 
tion. 'l'hus is the geiierator of the transforniat ion is 
given by 

( 3 . 2 2 )  

whcrc the oK and wr are the descriptors of the trans- 
forniation, we i i i i i i t  Ii:tvt., if g, is a scalar, that 

-Sg'=g,ws+g',ruw,. ( 3 . 2 3 )  

Hut since 6g,= [g,, C1 we have= that  

antl since the w's are arhitrary functions of x we can 
conclude that the 1% matrix does not irivolve clcriva- 
tives of the 6 function. Consequently, solving Eqs. 
(3.21) or finding the inverse of the 1% niatrix involves 
only a1gel)raic operatioris. In this regard, however, one 
must be sure that thc g ,  do not dcpeiid upoii (gfu)-( 
or g o r ;  otherwise w h a t  we have said would not be true 
arid in fact, if this were the case, 1Sqs. (3.21) would 
1)ccorne nonlinear in  these quantit ies. I:ort unat vly such 
is not the  C';LS~ as I iK Were able to show; the four non- 
vanishing s d t r s  fornied from g the g p u  and their first 
 id second derivatives depe~"d d y  upon the grn, trn 
and their spatial derivatives. 

Once having set up their coordinatc systelli 1i1( 
proceed to  construct a set of invariants. Since the 
constraints are the generators of inlinitesiiiial co- 
ordinate trallsforniatiolis the condition that a fuIlc- 
tional 1; of the g,, alld p r a  be an invariant is that the 
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Pb’s between it and all of the constraints must vanish. 
Without the use of coordinate conditions the con- 
struction of such quantities is extremely difficult and 
only a few such quantities are known at present. 
However, once rne introduces coordinate conditions 
into the theory one can construct invariants relatively 
easily. In fact, corresponding to each functional F 
there is another one F that has vanishing Pb’s wit!) the 
constraints. 

For the construction of p and in what follows it is 
convenient to introduce the notation 

{XI) = lxr, XL) (3.25) 
and 

{N,\ = (gar, ( - $ o ) - ’ l 1  (3.26) 

where agcin L (not a tensor index) runs from 1 to 4. 
Then, given an F we add to it a linear combination of 
the constraints and coordinate conditions according to  

P= F+/a.(g,-x‘)+@.X,) 82, (3.27) 

where the coefficients a, and 8, are determined by the 
condition that the Pb’s between p and ( g , - - x & )  and 
X, vanish. If the Pb matrix has in inverse one can 
determine the coefficients in Eq. (3.27) directly. T h u s  
if C,,(x, 2’) is the reciprocal of the Pb matrix so that” 

we can determine the a, by the requirement that 
[ F ,  X,]=O. If we multiply this requirement by C,,, 
sum over the indices, and integrate, we obtain 

a&= - f i F ,  X.’fc,, ( x’, x) #x’. (3.29) 

The H’s can be obtained similarly. If the g, are scalars 
G,, can be found immediately and hence so ran the 
a’s and B’s. 

As lone as we work only with ?hc barred qurniities 
we see that the  constraint equations and coordinate 
conditions can be trcatcd as strong equations since 
they all have vanishing Pb’s with any barred quantity. 
111 this regard then the 13K procedure is equivalent so 
that of introducing Db’s into the theory. 111 fact one 
can show immediately that 

[ F ,  R ] =  [ F ,  K I D .  (3.30) 

If we compute the total time derivative of P we have, 
as usual, that 

(3.31) 

Since II is a homogeneous linear functional of the X, 

“We have nqlected here the fart that the Ph’s [g,,,n,’] are 
not necessarily zero so that, strictly spaking, G,,(z, x ) is not 
reciprocal of the total Pb matrix. However only the reciprocal of 
[g,, ff,‘] is iit*eded to determioe a,. 

= aF’/at f [ P ,  H I .  

the second term on the right-hand side of Eq. (3.31) 
vanishes [this same result would hold of course if we 
had used H given by Eq. (3.5) instead of that given 
by (1.1) since we are not using the constraint or co- 
ordinate equations as strong equations here]. Further- 
more we see from Eq. (3.27) that aF/al= - .fa. Cpx 
so we have finally 

d -  - P = - / a 4 d ” z  
dl 

(3.32) 

or 
d -  - F = / j [ F ,  X1:]G,r(x‘l x) CpxIrx’ .  (3.33) 
d& 

We notice however that N,, as determined from Eq. 
(3.21) by multiplying this equation by G.1, is given by 

N,’= G,,(x’, X)  d3x. (3.34) I 
If we make use of this result in Eq. (3.33) we see that 
the total tinic derivative of lk’ is just given by 

‘’ F= [ F, /lv.X, a x ] =  [ F ,  H ]  
dl 

(3.35) 

so that 
dP/dt  = dp/d t .  (3 .36)  

This result is, of course, not surprising since P is weakly 
equal to F and Eq. (3.36) only holds as a weak cqua- 
lion. 

D. The Method of Arnowitt, Deser, and Misner7 

The IIamiltonian employed by ADM is obtainctl in  
the first instam e Trom the  Lagrangian formulation oi 
general relativity by making I I W  of methods dcvelopcti 
by Srhwinger.16 liy adding suitable surface terms to the 
action of general relativity, I= J (  -gR)(c l ‘ r ,  thcy 
show that it tan bc brought into the form 

whcrc the quantities appearing herein are defined as 
before. The prl appearing here as the canonical con- 
jugates to g,, arc defined by 

pr.= - K (  p - p g U b p b )  (3 .38)  

where rra= - N41‘4r, is the second fundamental form 
of the surface t=x4=const. In analogy with the para- 
meterized action for a particle system they look upon 
the N, as Lagrange multipliers associated with the 
coordinate covariance of the action I. Varying these 
quantities gives the constraint equations (2.4) and 
(2.5) while a variation of E,, and pr. gives the remainder 
of the Einstein field equations. One sees that the Hamil- 

J. Schwinger, Phys. Rev. 82, 914 (1951); 91, 713 (1953). 
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tonian leading to these latter equations, J N I K l  d3x, is 
identical to the one obtained by Dirac. We point out 
here that the constraint equations are just the Gauss- 
Codazi equations that are the conditions that a surface 
!=const with first and second fundamental forms g,, 
and rrl, respectively, can be imbedded in a four-di- 
mensional space described by the equations R,,= 0. 

The point of departure of the ADM method from 
the others described above lies in the coordinate con- 
ditions employed by them and the uses to which they 
are put in obtaining an effective Hamiltonian. They 
express their coordinate conditions in terms of the 
linear orthogonal decompositions of g,,  and pll .  If fi, is 
any symmetric matrix then one can decompose it using 
a generalized Helmholtz theorem according to 

fra=frrTT+jraT+ ( j r . i + j , , r )  (3.39) 

where f r I T T  is the traceless, transverse part of jr, and 
satisfies the conditions f r . , rTT= 0 and frrTT=O; j,,' is 
transverse and satisfies thereby the condition j r , , a T = O  
and is determined by its trace jT=jrrT. When one 
inserts these decompositions for g,, and pl* into the 
action (3.37) one obtains 

I =  (prrT'aSgr,''- ( - g T , r r ) d , l  - (2V2)-'fiT) 

+ 2 ( -  p',u- p,r,) a ~ r -  Nix,) d4x, (3.40) 

/ 
where 1/V2 is the inverse of the Cartesian Laplacian 
with "suitable" boundary conditions. The forin of this 
action suggested to  ADM that they take g,,TT and 
yTT to be thc dynamical variables of the theory, g T  and 
p' as the solved for variables and p T  and g, as the 
coordinate variables. Because g' and pr alone appear 
in the linear parts of the constraint equations one hopes 
that they can be solved for by an iterative procedure. 
The coordinate Conditions imposed by ADM are 

and 
+ (202)-'p'RA (3.41a) 

g , X x , .  (3.41b) 

They also use the ccrnditions 

- ( 2 V ) - ' ( p '  t V 2 p ' ) x : l  (3.42a) 
and 

g,- (4v*)-1p,,R5Xr* (3.42b) 

These latter conditions have the property that for 
g,,y'T=O, t h e  spatial metric reduces to isotropic form, 

If one uses the coordinate conditions and constraint 
equations as strorrg equations, the action (3.40) re- 
duces to the canonical form 

Le., g,,= (1  t 3 g q  L. 

J 

where X=  V *gT is the solution d the constraint equa 
tion E '=O.  The forrn of this action suggests that one 

can use I I=  JX d3x as the Hamiltonian for obtaining 
the equations of motion for grrTT and prrTT.  In a sepa- 
rate paper,l2 ADM show that the equations of motion 
obtained using this Hamiltonian are identical to those 
obtained using the Hamiltonian given in Eq. (1.1) in 
the coordinate system fixed by Eqs. (3.41). 

One can arrive a t  the same expression for the effec- 
tive Hamiltonian as did ADM by requiring that the 
coordinate conditions of the type in Eqs. (3.19) remain 
satisfied throughout the course of time. This will be 
the case provided the Pb  matrix possesses an inverse 
and then the N ,  are given by Eqs. (3.34). Let us now 
expand the X, about p=p*  where a star after a 
quantity has the same meaning as before. We have 
that 

(3.44) 

where again the dots represent terms containing higher 
powers of (p.-p*).  Since these terms will not con- 
tribute to the equations of motion we can again ignore 
them. Also, as before, E,* vanishes. Therefore, when 
we substitute the expression for N ,  from Eq. (3.34) 
into the above expression for the Hamiltonian we 
obtain 

H= l ( P 4 - P  4 * )  dax. (3.45) 

If we are only interested in the equations of motion of 
the dynamical variables g A  and p" we can drop the 
first term in the integrand. Thus the effective Hamil- 
tonian becomes 

H = - /p4* d J x  (3.46) 

which is just the result obtained by ADM. Since we 
have not used the coordinate conditions or constraint 
equations as strong equations in deriving this result 
.we see that immediately that the equations of niotion 
for the dynaniical variables obtained using this Hamil- 
tonian will be the same as those obtained using the 
original Hamiltonian (1.1).  

N. RELATION BETWEEN THE METHODS 

A t  first sight the effective Hamiltoniail obtained by 
D r a c  and by the author, l l = l ~ ~ , , , a , n ,  seems to bear 
little relation to that obtained by ADM and indirectly 
by BK. The main reason for this apparent difference 
lies in the different types of Coordinate conditions 
employed in the two caseb. To explore this difference 
further we see that if we were to require that g,=O 
we could not alteriiately require that g l = x ' .  In  the 
foriuer case we SHW that 1% matrix must be singular in 
order that N, not be zero while in the lalter case it 
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should possess an inverse in order 
mine N ,  as in Eq. (3.34). 

While we cannot use the same I 

hat we can deter- 

in the two types 
of coordinate conditions we can use closely related 
ones. Thus, if we required that g,=z?, we saw that the 
N ,  could be obtained from Eq. (3.21) which we rewrite 
as 

a:=p:[g,, X,'] d a d .  (4.1) 

Suppose now that we introduce a new set of g, coordi- 
nate variables jj, that are obtained from the g, by 
differential operations performed on these latter 
quantities. Thus, for instance, we might take g,= V*gs, 
etc., where V2 is now the generalized Lapacian operator 
for the metric grr. Then it follows immediately from 
Eq. (4.1) that  

O =  1 N,'[B,, X,'] d3x. (4.2) 

Thus the same N ,  that satisfy Eqs. (4.1) can satisfy 
Eqs. (4.2). But these latter equations are just the 
conditions that the coordinate conditions g,= 0 remain 
satisfied in time. However, if g,=x' and g , = V 2 ~ ,  we 
have immediately that g , = O  so that the conditions 
that the equations g , = O  and g , = x L  remain satisfied in 
time are seen to  be directly related to each other as 
above. Furthermore we see that the Pb matrix TO,, Kc.'] 
will not possess an inverse and that the N ,  will be null 
vectors of this matrix. The difference in the structure 
of the two Pb  matrices is due, in the final analvsis, to 
the fact that  the conditions o , = O  contain less informa- 
tion than do the conditions g , = x ' .  Thus, if the g, are 
scalars, the latter type of conditions determine the 
cooidiiiiite system uniquely, since presumabiy the 
values of the g, are known at each point of the sDace- 
time manifold. However, while the related conditions 
g , = x &  imply the conditions G , = O  the converse is not 
true without additional information, e.g., boundary 

matrix [SA, X6'] is singular it means that some linear 
combination of the X still vanishes only weakly and 
can therefore be used as the generator of a subgroup of 
the original symmetry group generated by the full 
sct of X'. 

To see how effective Hamiltonians that arise from 
the use of the two different tvpes of coordinate con- 
ditions are related to each other we shall consider the 
srwcial case where we use the IXrac coordinate con- 
ditions (2.1) and (3.15) and the variables p ,  K, ijIU 
and p.  In  terms of these quantities the Hamiltonian 
const railit is 

cnnditinns. This is reflected in the fact :ha:, if :hc PS 

If we were to follow the IXrac procedure we would 
solve this equation for K ,  set its conjugate 2 ~ - I p  equal 

since K cannot vanish, and taking as the Hamiltonian 
IX*,.in d3x. Alternately we could solve the above 
equation for 4 (erntc,r)-,,. The conjugate to this quantity 
is + $ - * ( ~ - ' p )  where V-2 is the inverse to the Laplacian 
belonging to the metric Q,,. Since it is not unique we 
suppose that it is fixed by appropriate boundary con- 
ditions. If now the Pb  matrix of $$-*(K-~P! with $21, 
is not singular we can require, as a coordinate con- 
dition, that 

- ( 2@)-'( K - ' p )  wf. (4.4) 

We see that this condition implies that p = O  but not 
conversely. 

Now according to ADM the Hamiltonian in the 
coordinate system in which Eq. (4.4) is valid is just 
( I4(erS~,,) d 3 x )  * where as before the star means 
that the starred quantity is to be expressed in terms 
of the solution of the constraint equation. But from 
Eq. (4.3) we see that this quantity is just { JXmain d3x]* 
which is just equal to H*,.in, the Hamiltonian that 
follows from the Dirac procedure. A similar discussion 
can be carried out for other types of coordinate con- 
ditions. In general one finds that the Hamiltonian 
obtained by the ADM procedure is equal t o  that 
following Dirac whenever the coordinate conditions 
used in the two cases are related as in the above case. 

V. QUANTIZATION OF GENERAL RELATIVITY 

Since all of the canonical schemes were devised by 
their authors with the idea of using them in the con- 
struction of a quantized version of general relativity 
we would like to conclude this survey with a hrief 
comparison of the several attempts in this direction. 
.Roughly speaking, the aim of Dirac, the author, and 
ADM was to  eliminate redundant degrees of freedom 
from the theorv by  the introduction of coordinate 
conditions. Although they differed in detail it was 
necessary that they be able to solve the constraint 
equations for certain functions of the canonical vari- 
ables, the quantities we have called g,. 'I'o date none of 
the authors have discovered a set of K' that would 
allow one to solve the constraint equations in closed 
form. Consequently these authors must resort to some 
sort of iteration scheme to solve the constraint equa- 
tions for the g, based upon a weak-field approxima- 
tion. But it seems to  the author that the use of a weak- 
field iteration procedure destroys just that aspect of 
general relativity that might be responsible for features 
which are quantitatively different from those found in 
conventional quantum field theories, namely its 
intrinsic nonlinearity. 

The approach of BK is essentially different from 
that of the other authors in that they do not use the 
coordinate conditions to eliminate degrees of freedom 
from the theory but merely to construct an observable 

from everv F by means of Eq. (3.27). For this 
to zero which is equivalent to setting p equal to zero purpose it is not necessar). to solve any constraint 
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equations. In  the quantized version of this formulation 
of the theory one would look for an operator representa- 
tion for the P’s which would reproduce !he classical 
commutator algebra between the various F’s obtained 
from their Pb’s. Since now one has many more ob- 
servables than degrees of freedom the observables are 
not all independent of one another and so one has 
certain consistency conditions to satisfy that are not 
present when one eliminates degrees of freedom from 
the theory directly. It is not clear a t  present whether 
or not one can satisfy these consistency requirements. 

If they can be satisfied then the BK F i G C C i i d i e  would 
have the advantage over the other schemes of quantua- 
tion that it does not require a weak-field approximation 
procedure t o  obtain its results. 
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